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In recent literature it was reported that the valence triple zeta basis set augmented by polar-
ization functions is not too reliable for vinyl monohalo- and dihalomethanes and -silanes,
the halogen being fluorine and chlorine. The major conclusion was that a valence triple zeta
basis is too small to be augmented by polarization functions in a balanced way, at least on
vinylmonofluoromethane. Thus we decided to apply the 6-311++G** basis set to the com-
plete series of methanes, silanes and germanes (the latter ones are just added for complete-
ness because no experimental data are available for them and, moreover, we published them
already previously) and to compare the results to experimental data available in the litera-
ture to see whether the failures of this basis set show up in the complete series of molecules.
In the literature we found five such molecules and the information which of the conformers
is the most stable. Indeed we found that predictions on the relative stability of conformers
in those systems with this basis set and MP2 as well as DFT are with a 60:40 chance, three
being correct predictions and two being incorrect ones out of the five. However, since the
energy differences are rather small in these systems and due to the fact that – as a conse-
quence of twofold degeneracy of the gauche conformer on the potential curve of the tor-
sional vibration – the abundances of the conformers in equilibrium do not change too
much, we decided to calculate also vibrational spectra for three examples and to compare
them also to experiment. It is reported that besides the failures in total energy (we have
chosen two examples where predictions of the nature of the stable conformer are correct,
and one where it is not), the vibrational spectra are rather well reproduced, especially when
experimental energies are used to calculate abundances in equilibrium in the case where the
prediction of the stable conformer failed.
Keywords: MP2; DFT; Conformational equilibria; Theoretical vibrational spectra; Methanes;
Silanes; Germanes; Ab initio calculations.

The conformational stability of several vinyl compounds has recently been
investigated by density functional (B3LYP) and correlated ab initio calcula-
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tions using a large 6-311++G** basis set to calculate rotational barriers in
these molecules1–4. The emphasis in this work was on comparisons of the
C–M (where M is C, S, P, or As) barriers. Ethenesulfonyl chloride and fluo-
ride H2C=CHSO2X (X = Cl, F) were found to be predominantly in the gauche
conformation in which the vinyl group nearly eclipses one of the two S=O
bonds1, yielding conjugation between the coplanar vinyl and S=O groups.

Vinyl ketene H2C=CH–CHCO and vinyl isocyanate H2C=CH–NCO were
found to have a cis/trans equilibrium with the trans form being lower in en-
ergy than cis2. Further it was found that the C–C rotational barrier is con-
siderably higher in energy than the C–N one, due to the difference in the
partial π-characters of the C–C and the C–N bond2.

For vinylphosphonic dichloride and difluoride H2C=CHP(O)X2
3 and

vinylarsonic dichloride and difluoride H2C=CHAs(O)X2
4, the planar cis

forms were found to be about 1.5 kcal/mol lower in energy than the
non-planar gauche forms. In both molecules the phosponic P=O or the
arsonic As=O bond in the predominant cis conformation was again pre-
dicted to eclipse the vinyl group3,4. The cis–gauche barrier for the internal
rotation around the C–As bond was calculated to be of the order of about
2.5 kcal/mol, which is less by about 0.5 kcal/mol than that calculated for
the vinylphosphonic dihalides H2C=CHP(O)X2

3. The decrease in the rota-
tional barrier as going from vinylphosphonic dihalides to vinylarsonic
dihalides was explained as being due to decrease in the covalent bond char-
acters when going from the C–P to the C–As bond. The relative stability of
the low-energy conformers in all the vinyl compounds mentioned above
could be explained as a result of a noticeable conjugation between the vinyl
and the substituent groups1–4.

Our calculations were performed, using the Gaussian98 program5 run-
ning on an IBM RS/6000 43P model 260 workstation. We carried out
DFT-B3LYP/6-311++G** and ab initio MP2/6-311++G** calculations. On
DFT and MP2 levels, the geometries of our molecules were fully optimized.
The calculations were done for the complete series of vinylmonohalo- and
dihalomethanes and -silanes with fluorine and chlorine as the halogens. Of
our previously published results6 we added, for the sake of comparison, the
corresponding germanes, for which no experimental data are published in
the literature.

In addition we calculated, for comparison, the vibrational infrared and
Raman spectra of some of the molecules where experimental spectra are
published, using the computational methods previously described7–10. We
have chosen two examples where we get approximately correct relative en-
ergies for the conformers, i.e. vinyldifluoromethane and vinyldifluoro-
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silane. Another example is that where the cis conformer is experimentally
the stable one11, while in our calculations gauche turned out to be more sta-
ble, i.e. vinyldichlorosilane. We have seen previously8,12,13 that the spectra
calculated in this way are in reasonable agreement with experimental ones,
provided that the abundances in the conformational equilibria are calcu-
lated from experimental relative energies. In that case we used both abun-
dances, one set calculated with theoretical Gibbs energies, the other one
with experimental relative energies, although the differences between the
two sets are not very pronounced because of the twofold degeneracy of the
gauche conformer on the potential curve.

Our interest in this study resulted from the finding reported by Galabov
et al.14 that in 3-fluoropropene diffuse functions together with a relatively
small basis set (like in 6-311++G**) should increase the stability of the
gauche form to an unreasonable extent. We were basically interested in
finding out whether this effect occurs not only for 3-fluoropropene, but
also for the higher silane homologues and for fluoro and chloro derivatives.
The results of the corresponding germanes published earlier6 are included
in our table for the sake of completeness.

Initially, however, the interesting structures of organosilanes15–21 and
organogermanes22–31 had attracted our attention to investigate the
conformational and structural stability of vinylmonochlorogermane
(H2C=CH–GeH2Cl) and vinyldichlorogermane (H2C=CH–GeHCl2), a study
which had been published in ref.6.

Ab initio CALCULATIONS

The structures of our molecules (Fig. 1) were optimized by minimizing the
energy with respect to all the geometrical parameters at DFT and MP2 level
of calculation.
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FIG. 1
Common atom numbering in the series of compounds, H2C=CH–AXY2, where A is C for the
methanes, Si for the silanes, and Ge for the germanes, while in the monohalo derivatives X is a
halogen, and Y is H while in the dihalo derivatives X is H and Y is a halogen



The calculated structural parameters, rotational constants and total di-
pole moments of the stable conformers of the molecules are actually not
listed in tables, simply because too large a collection of numbers would re-
sult; furthermore, for such geometrical parameters for most of our mole-
cules no experimental data are available. Actually, there are no pronounced
differences between the two levels of calculation, and thus we performed
the following spectra calculations on DFT level. All molecules exist in a
conformational equilibrium between the stable cis and gauche conformers.
In all molecules the trans form is a transition state of the internal rotation.
In the monohalo derivatives the gauche forms are slightly more stable than
the cis conformers, while in the dihalo derivatives usually cis is more stable
than gauche. This does not change upon adding the zero-point vibrational
contribution to the total energy. However, it is pointed out in14 that the
stabilization of gauche forms is an artifact of our basis set.

Calculation of Vibrational Spectra

Vibrational spectra can be calculated and plotted from the Gaussian98 out-
put. The general formalism for this procedure can be found in Appendix. As
mentioned, for equilibrium mixtures abundances or populations must be
calculated. This is best based on equilibrium constants and thus finally on
the Gibbs energies for the conformers at 298.15 K and 1 atm pressure. Thus
populations of, say, N conformers in equilibrium (in our cases two of them)
are calculated from the Gibbs energies at 298.15 K, provided by the program.

If N conformers, Cj, j = 1 to N, are linked by a sequence of N – 1 coupled
equilibria

Cj ↔ Cj+1, j = 1, N – 1 (1)

with equilibrium constants, Ki
o

K i Ni
i

i

o C

C
to= = −+[ ]

[ ]
,1 1 1 (2)

where square brackets denote concentrations, and if Gi
o is the standard

Gibbs energy of conformer i, then for the equilibrium linking Ci with Ci+1
we have the Gibbs energy change

∆G G G i Ni i i
o o o to= − = −+1 1 1; . (3)
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Thus Ki
o is given by
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where gi is the symmetry number of conformer i, being 1 when no rotor in-
volved is in the gauche position, and in general 2 when one or more rotor is
in the gauche position. Then, with K0

o = 1, we have
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The abundance, Pi, of conformer i in the complete conformational equi-
librium is then given by
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with K0
o = 1 (it is actually arbitrary, because it cancels anyway).

This equation looks rather unpleasant, but it can be simplified, by taking
into account that the product of two equilibrium constants, Ki

o and Ki+1
o , of

the equilibria coupled by the conformer Ci+1 is rather simple. Since

∆G G Gi i i
o o o= −+1

∆G G Gi i i+ + += −1 2 1
o o o

(9)

the product simplifies to
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which reduces to
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and thus the influence of Ci+1 cancels out
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Therefore in each sequence of products all intermediate conformers can-
cel out and only the last one and the first one remain in the populations
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with S(i) = gi/g1 and ∆iG
o = Gi

o – G1
o . Since S is as a factor at every term in the

nominator and in the denominator, 1/g1 cancels, yielding finally
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The order of conformers is completely arbitrary, but the most convenient
one will be the order of decreasing stability of the conformers, with the
most stable one being C1.

A crude first estimate of the equilibrium constant, K, at 298.15 K for the
gauche↔cis equilibrium could be the ratio of the two populations Pcis/Pgauche
(as used previously by us), which is

K
P

P

g

g
E E Ecis

gauche

cis

gauche

E
RT

cis gauche= = = −
−

e
∆

∆; (15)

where gcis/ggauche = 0.5 is the ratio of the symmetry numbers of the two con-
formers, R denotes the gas constant, and the E-s are the total energies of the
conformers as obtained experimentally. This procedure is used to calculate
the experimental populations in the case of vinyldichlorosilane where the
basis set predicts the wrong conformer to be the more stable one.
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Vibrational Frequencies and Normal Coordinate Analyses

For the assignment of the vibrational lines, we performed also the vibra-
tional analysis for our chosen examples on DFT level to see whether or not
the 6-311++G** basis set could be used for the calculation of more or less re-
liable vibrational spectra. Vinylmonohalo and vinyldihalo compounds
have C1 symmetry in their gauche forms, and Cs symmetry in their cis
forms. Thus in cis the 21 vibrational modes span the irreducible representa-
tions 14 A′ and 7 A″, while they are all of A symmetry in gauche. The A′
modes should be polarized while the A″ modes be depolarized in the
Raman spectra of the liquid pure cis compounds. Normal coordinate analy-
ses were carried out for the molecules as described previously8 to provide a
complete assignment of the fundamental vibrational frequencies. An over-
complete set of internal coordinates (Table I) was used to form symmetry
coordinates (Table II). Redundant internal coordinates are removed auto-
matically by our PED program and are used only to facilitate the construc-
tion of symmetry coordinates. The formalism for that is outlined in
Appendix.

DISCUSSION

Relative Energies

In Table III we list the total and relative energies of cis and gauche conform-
ers for our series of compounds, CH2=CH–AXY2, A being carbon, silicon or
germanium, X and Y being hydrogen, fluorine or chlorine.

The energies of the Ge compounds are from our previous paper6 and have
been added for the sake of completeness. Five experimental relative ener-
gies as found in the literature are also included. First of all we have to notice
that all relative energies are very small, mostly just about 0.5 kcal/mol, only in
a few cases 1.5 kcal/mol are reached. With such small energy differences it
is not surprising that calculations on DFT or MP2 level are not too reliable,
even experimental determinations of the stable conformers are sometimes
not very reliable within expected experimental errors.

However, note that with the exception of some of the Ge compounds,
the calculated predictions of most stable conformers are all in line with ar-
guments based on steric effects alone. These steric effects tell that in
monohalo compounds (X = halogen, Y = H), cis forms should be less stable
than gauche ones, because in cis the bigger halogen atom eclipses the C=C
double bond, experiencing higher steric hindrance than in gauche where a

Collect. Czech. Chem. Commun. 2007, Vol. 72, No. 1, pp. 15–50

Conformational Stability for Several Vinylhalomethanes and Silanes 21



Collect. Czech. Chem. Commun. 2007, Vol. 72, No. 1, pp. 15–50

22 Förner, Badawi:

TABLE I
Internal coordinate definitions (see Fig. 1 for atom denotation) for our series of molecules
H2C=CH–AXY2 where A is C, Si, and Ge, while X and Y are H or a halogen

No. Coordinate Definition

1 A1C3 stretch Q

2 A1X2 stretch X1

3 A1Y4 stretch X2

4 A1Y5 stretch X3

5 C3C6 stretch R

6 C3C7 stretch S

7 C6H8 stretch P1

8 C6H9 stretch P2

9 C3A1X2 bend π1

10 C3A1Y4 bend π2

11 C3A1Y5 bend π3

12 X2A1Y4 bend ε1

13 X2A1Y5 bend ε2

14 Y4A1Y5 bend ε3

15 C6C3A1 bend β1

16 A1C3H7 bend β2

17 C6C3H7 bend β3

18 H8C6H9 bend α1

19 C3C6H8 bend α2

20 C3C6H9 bend α3

21 H7C3C6A1 wag ω

22 H8C6C3A1 – H9C6C3A1 torsion ξ1

23 H8C6C3A1 + H9C6C3A1 torsion ξ2

24 X2A1C3C6 + Y4A1C3C6 + Y5A1C3C6 torsion τ



Collect. Czech. Chem. Commun. 2007, Vol. 72, No. 1, pp. 15–50

Conformational Stability for Several Vinylhalomethanes and Silanes 23

TABLE II
Symmetry coordinates for our series of molecules, H2C=CH–AXY2 where A is C, Si, and Ge,
while X and Y are H or a halogen. Coordinates are not normalized

Species Description Coordinate

A′ C–H stretch S1 = S

CH2 antisymmetric stretch S2 = P1 – P2

CH2 symmetric stretch S3 = P1 + P2

AX stretch S4 = X1

AY2 symmetric stretch S5 = X2 + X3

CA stretch S6 = Q

CC stretch S7 = R

CH2 deformation (scissor) S8 = 2α1 – α2 – α3

CH2 wag S9 = α2 – α3

AX deformation S10 = ε1 + ε2 – 2ε3

AY2 deformation S11 = ε1 + ε2 + ε3 – π1 – π2 – π3

AY2 deformation S12 = 2π1 – π2 – π3

CCA bend S13 = 2β1 – β2 – β3

CH bend (in-plane) S14 = β2 – β3

A″ AY2 antisymmetric stretch S15 = X2 – X3

CH bend (out-of-plane) S16 = ω

CH2 deformation I S17 = ξ1

CH2 deformation II S18 = ξ2

AX deformation S19 = π2 – π3

AY2 deformation S20 = ε1 – ε2

AXY2 torsion S21 = τ
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TABLE III
Total energies, Et (in hartrees), and relative energies, Er (in cal mol–1), for the cis and gauche
conformers of vinyhalomethanes (H2C=CH–AXY2, A = C), vinylhalosilanes (H2C=CH–AXY2,
A = Si) and, for the sake of completeness, for vinylhalogermanes (H2C=CH–AXY2, A = Ge)6,
as calculated by DFT and MP2, using a 6-311++G** atomic basis set

Y Method Conformer Et Er

Monofluoro derivatives (X = F, Y = H)

C DFT cis –217.2087946 54

C DFT gauche –217.2088810 0

C MP2 cis –216.6193601 336

C MP2 gauche –216.6198948 0

C exp14 gauche 166–752

Si DFT cis –468.6742356 390

Si DFT gauche –468.6748568 0

Si MP2 cis –467.7028304 558

Si MP2 gauche –467.7037197 0

Ge DFT cis –2256.1367067 128

Ge DFT gauche –2256.1369102 0

Ge MP2 cis –2254.0551013 246

Ge MP2 gauche –2254.0554935 0

Difluoro derivatives (X = H, Y = F)

C DFT cis –316.4865476 0

C DFT gauche –316.4853600 745

C MP2 cis –314.8750530 0

C MP2 gauche –314.8742956 475

C exp32 gauche 234 ± 2

Si DFT cis –568.0189718 0

Si DFT gauche –568.0185988 234

Si MP2 cis –566.8626258 0

Si MP2 gauche –566.8622981 206

Si exp33 gauche 339 ± 33

Ge DFT cis –2355.4541242 64

Ge DFT gauche –2355.4542268 0

Ge MP2 cis –2353.1873135 72

Ge MP2 gauche –2353.1874274 0
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TABLE III
(Continued)

Y Method Conformer Et Er

Monochloro derivatives (X = Cl, Y = H)

C DFT cis –577.5655145 1161

C DFT gauche –577.5673642 0

C MP2 cis –576.6003338 1327

C MP2 gauche –576.6024478 0

Si DFT cis –829.0152890 355

Si DFT gauche –829.0158549 0

Si MP2 cis –827.6618088 449

Si MP2 gauche –827.6625250 0

Si exp34 cis
134–346

Ge DFT cis –2616.4960249 258

Ge DFT gauche –2616.4964364 0

Ge MP2 cis –2614.0355382 7

Ge MP2 gauche –2614.0355501 0

Dichloro derivatives (X = H, Y = Cl)

C DFT cis –1037.1850352 0

C DFT gauche –1037.1826768 1480

C MP2 cis –1034.9473408 0

C MP2 gauche –1034.9449238 1517

Si DFT cis –1288.6940314 0

Si DFT gauche –1288.6936555 236

Si MP2 cis –1286.7741567 0

Si MP2 gauche –1286.7738306 205

Si exp11 cis 111

Ge DFT cis –3076.1691743 0

Ge DFT gauche –3076.1691687 4

Ge MP2 cis –3073.1435169 190

Ge MP2 gauche –3073.1438190 0



smaller H atom eclipses the double bond. On the contrary, in the dihalo de-
rivatives (X = H, Y = halogen), gauche should be less stable than cis, because
when the AXY2 rotor is in this position one of the bigger halogen atoms
eclipses the C=C double bond. Thus here in gauche there is sterical crowd-
ing between a halogen atom and the double bond, while in cis the smaller
hydrogen atom eclipses the double bond.

In the five experimental cases as found in the literature, two of them dis-
agree with the argument based on steric effects only and thus with our cal-
culations, while three agree. In the case of vinylmonofluoromethane there
might be an additional electrostatic attraction between H and F atoms in
the cis form which could overcome the steric effects and bring about the
experimental preference of the cis form. The charges are –0.24 e on F and
+0.18 e on H, while the distance between the F atom and the hydrogen at
the double bond is only 2.45 Å (the values are from the MP2/6-311++G**
calculations). This might give an additional stabilization to cis, probably
not too well reproduced in the calculations. However, in the other case
where the calculations have gone wrong (vinyldichlorosilane), there are no
obvious reasons for the theoretical overestimation of the stability of cis.
One should, however, view this failure of theory as not too serious, because
in this system gauche is by only 111 cal/mol more stable than cis, while the
theoretical stabilization of cis is only around 200 cal/mol. One cannot ex-
pect that MP2 or DFT can easily reproduce such very small energy differ-
ences.

Thus it seems that the basis set effect found by Galabov et al.14 in the
case of vinylmonofluoromethane is not such a serious shortcoming of the
basis set at all.

Vibrational Spectra and Assignment

We have chosen three of the five experimentally known cases to calculate
vibrational spectra at DFT level; two of them, vinyldifluoromethane and
vinyldifluorosilane, are those where the correct most stable conformer was
predicted, the other one, vinyldichlorosilane, is one where predictions were
wrong. The spectra have been calculated and plotted, and the potential en-
ergy distribution (PED) among the symmetry coordinates was computed as
given in the second part of Appendix. The abundances of the conformers in
the conformational equilibrium were calculated on the basis of their Gibbs
energies as described above in the two former cases, while in the latter case
spectra were plotted using abundances from experimental energies as well
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FIG. 2
Infrared spectra of vinyldifluoromethane, upper panel: experimental spectrum (gas) as replot-
ted from ref.32 and lower panel: theoretical spectrum obtained from our DFT calculation
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FIG. 3
Raman spectra of vinyldifluoromethane, upper panel: experimental spectrum (gas) as replotted
from ref.32 and lower panel: theoretical spectrum obtained from our DFT calculation
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FIG. 5
Raman spectra of vinyldifluorosilane, upper panel: experimental spectrum (liquid) as replotted
from ref.33 and lower panel: theoretical spectrum obtained from our DFT calculation

FIG. 4
Infrared spectra of vinyldifluorosilane, upper panel: experimental spectrum (annealed solid) as
replotted from ref.33 and lower panel: theoretical spectrum obtained from our DFT calculation
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as those from Gibbs energies. The calculated infrared and Raman spectra,
together with the replotted experimental ones are shown in Figs 2 to 7.

Interestingly, the theoretical and experimental spectra compare rather
well with each other, there is a near one-to-one correspondence between
lines in the experimental and in theoretical spectra. Especially important is
that this holds also in the case of vinyldichlorosilane, despite the wrongly
predicted relative energies. Actually, the agreement seems to be better when
experimental relative energies are used instead of theoretical Gibbs ener-
gies. However, the improvement does not go too far, because, due to the
degeneracy of the gauche form on the potential curve for the torsion, the
populations do not differ too much and gauche is in both cases the more
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FIG. 6
Infrared spectra of vinyldichlorosilane, upper panel: experimental spectrum (gas) as replotted
from ref.11, central panel: spectra of the conformers from our DFT calculations (33% cis + 67%
gauche) but with experimental11 relative energies in a Boltzmann distribution to calculate the
abundances at 298.15 K, and lower panel: completely theoretical spectrum obtained from our
DFT calculation (44% cis + 56% gauche)
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abundant conformer (67% from experimental energies, 56% from Gibbs en-
ergies). Note that in the latter case only the torsional mode comes out con-
siderably too low in wavenumber in the theoretical spectra. As usual, in all
spectra CH stretches appear too high in wavenumbers in theory, while the
skeletal modes are usually reproduced approximately correct.

In Tables IV–VI we give the PED and the spectra for the cis and gauche
conformers for our three systems.

The observed wavenumbers in comparison with the calculated ones to-
gether with the error percentages indicate the overall correctness of the the-
oretical spectra. The PED values are given to facilitate the assignment of the
vibrational bands to individual movements within the molecules. Interest-
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FIG. 7
Raman spectra of vinyldichlorosilane, upper panel: experimental spectrum (annealed solid) as
replotted from ref.11, central panel: spectra of the conformers from our DFT calculations (33%
cis + 67% gauche) but with experimental11 relative energies in a Boltzmann distribution to cal-
culate the abundances at 298.15 K, and lower panel: completely theoretical spectrum obtained
from our DFT calculation (44% cis + 56% gauche)
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TABLE IV
Symmetry species, si, DFT wavenumbers, ki (in cm–1), observed wavenumbers from the litera-
ture32, ki(obs) (in cm–1), error percentage in the DFT values, e (in %), infrared intensities,
Ii (in km mol–1), Raman activities, Si (in Å4 amu–1), depolarization ratios ρi and distribution
of the potential energy of a normal mode in the symmetry coordinates, PED (only values
larger than 10% are given), for the normal modes i in cis- and gauche-vinyldifluoromethane
(CH2=CH–CF2H)

si ki ki(obs) e Ii Si ρi PED

cis-Vinyldifluoromethane

A″ 97 93 4.3 0.45 4.02 0.75 100% S21

A″ 322 323 0.3 1.14 2.54 0.75 74% S19, 14% S18, 11% S16

A′ 336 338 0.6 7.64 1.83 0.54 74% S13, 19% S12

A′ 439 444 1.1 17.19 2.25 0.48 28% S11, 28% S10, 25% S12,
15% S6

A′ 600 606 1.0 3.00 2.70 0.13 44% S11, 23% S5, 11% S12,
10% S6

A″ 702 683 2.8 0.53 0.58 0.75 58% S18, 18% S19, 13% S16,
11% S15

A′ 919 911 0.9 8.20 4.28 0.09 51% S9, 21% S6

A″ 984 948 3.8 48.85 0.94 0.75 96% S17

A″ 1017 1006 1.1 59.60 2.74 0.75 78% S16, 12% S18

A″ 1023 1061 3.6 218.17 2.94 0.75 85% S15, 12% S18

A′ 1094 1105 1.0 181.00 5.88 0.35 66% S5, 16% S10

A′ 1184 1176 0.7 24.48 3.01 0.72 35% S18, 20% S9, 17% S14,
16% S12, 10% S13

A′ 1307 1283 1.9 1.12 6.74 0.26 58% S14, 18% S9

A″ 1355 1347 0.6 11.47 4.22 0.75 98% S20

A′ 1365 1354 0.8 27.85 13.86 0.34 55% S11, 15% S8, 12% S12,
11% S7

A′ 1468 1439 2.0 46.32 7.27 0.47 70% S8, 11% S11

A′ 1712 1662 3.0 2.83 35.11 0.07 71% S7, 13% S8

A′ 3090 2966 4.2 27.62 74.03 0.22 99% S4

A′ 3135 3006 4.3 5.77 90.99 0.13 96% S3

A′ 3167 3054 3.7 1.68 97.89 0.29 96% S1

A′ 3224 3104 3.9 6.02 60.67 0.57 95% S2
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TABLE IV
(Continued)

si ki ki(obs) e Ii Si ρi PED

gauche-Vinyldifluoromethane

A 100 98 2.0 0.59 3.77 0.75 100% S21

A 267 274 2.6 0.52 1.26 0.59 48% S13, 44% S19

A 379 383 1.0 8.16 2.76 0.63 31% S12, 19% S19, 14% S18

A 508 518 1.9 2.62 1.51 0.64 64% S10, 12% S11

A 578 566 2.1 2.40 2.89 0.57 23% S13, 22% S19, 20% S18

A 717 712 0.7 11.83 3.04 0.18 23% S18, 21% S5, 20% S6

A 950 946 0.4 31.44 3.39 0.03 36% S6, 29% S12, 14% S18

A 988 956 3.3 49.48 1.37 0.75 99% S17

A 1019 1023 0.4 32.14 1.62 0.54 77% S16, 19% S18

A 1065 1089 2.2 145.19 2.87 0.49 38% S5, 21% S15, 19% S9

A 1154 1156 0.2 79.96 1.45 0.61 25% S5, 16% S6, 13% S9,
12% S15, 11% S10

A 1314 1288 2.0 0.66 15.93 0.29 58% S14, 14% S9, 13% S7

A 1363 1347 1.2 25.56 4.23 0.55 62% S20, 23% S11

A 1390 1376 1.0 36.93 4.99 0.73 38% S11, 32% S20, 15% S12

A 1449 1421 2.0 32.09 11.60 0.43 77% S8

A 1712 1662 3.0 1.38 38.05 0.07 71% S7, 12% S8

A 3066 2952 3.9 34.29 119.95 0.23 100% S4

A 3147 2995 5.1 3.55 62.88 0.17 91% S3

A 3167 3044 4.0 3.05 131.94 0.21 90% S1

A 3237 3108 4.2 2.67 51.50 0.70 99% S2
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TABLE V
Symmetry species, si, DFT wavenumbers, ki (in cm–1), observed wavenumbers from the litera-
ture33, ki(obs) (in cm–1), error percentage in the DFT values, e (in %), infrared intensities,
Ii (in km mol–1), Raman activities, Si (in Å4 amu–1), depolarization ratios ρi and distribution
of the potential energy of a normal mode in the symmetry coordinates, PED (only values
larger than 10% are given), for the normal modes i in cis- and gauche-vinyldifluorosilane
(CH2=CH–SiF2H)

si ki ki(obs) e Ii Si ρi PED

cis-Vinyldifluorosilane

A″ 76 70 8.6 0.22 4.83 0.75 100% S21

A″ 201 200 0.5 0.20 2.69 0.75 83% S19

A′ 207 220 5.9 11.42 1.58 0.51 58% S13, 37% S12

A′ 281 295 4.7 20.94 2.27 0.54 50% S10, 26% S11, 13% S12

A′ 396 404 2.0 22.26 2.97 0.29 40% S10, 22% S13, 17% S12,
13% S6

A″ 544 541 0.6 17.53 0.92 0.75 63% S18, 23% S16, 14% S19

A′ 716 724 1.1 48.02 9.11 0.02 63% S6

A′ 820 831 1.3 21.64 5.22 0.57 46% S5, 31% S11, 12% S12

A″ 821 842 2.5 2.88 7.88 0.75 75% S20, 25% S15

A′ 873 892 2.1 346.00 2.49 0.60 41% S5, 36% S11, 10% S6

A″ 908 950 4.4 264.76 1.78 0.75 74% S15, 21% S20

A″ 1014 968 4.8 42.42 0.68 0.75 100% S17

A′ 1029 1008 2.1 12.33 2.22 0.69 61% S9, 30% S14

A″ 1040 1022 1.8 16.72 0.08 0.75 71% S16, 29% S18

A′ 1296 1277 1.5 6.25 11.22 0.17 60% S14, 26% S9

A′ 1447 1421 1.8 30.17 19.47 0.35 73% S8, 20% S7

A′ 1653 1606 2.9 12.26 21.24 0.05 68% S7, 26% S8

A′ 2293 2234 2.6 94.45 111.08 0.14 100% S4

A′ 3113 2968 4.9 11.02 79.87 0.14 96% S3

A′ 3130 3011 4.0 0.58 146.34 0.28 94% S1

A′ 3193 3073 3.9 8.41 75.22 0.58 97% S2
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TABLE V
(Continued)

si ki ki(obs) e Ii Si ρi PED

gauche-Vinyldifluorosilane

A 79 79 0.0 0.48 4.66 0.75 100% S21

A 158 175 9.7 0.92 1.12 0.62 55% S19, 39% S13

A 238 248 4.0 11.72 2.57 0.69 39% S12, 16% S11, 15% S19

A 313 327 4.3 14.48 1.05 0.69 73% S10

A 408 430 5.1 15.21 3.52 0.52 38% S13, 20% S19, 17% S12

A 546 535 2.1 54.54 2.47 0.51 48% S18, 16% S16, 12% S11

A 674 684 1.5 37.54 10.00 0.06 68% S6

A 811 824 1.6 26.80 6.33 0.56 48% S5, 19% S20, 18% S11

A 834 847 1.5 7.94 7.56 0.74 58% S20, 19% S15, 14% S5

A 880 896 1.8 316.26 3.88 0.73 39% S11, 27% S5, 14% S12,
10% S6

A 909 948 4.1 236.31 2.91 0.70 74% S15, 18% S20

A 1022 978 4.5 36.94 0.86 0.63 100% S17

A 1031 1010 2.1 23.78 1.26 0.62 58% S9, 28% S14

A 1039 1022 1.7 18.24 0.52 0.48 70% S16, 28% S18

A 1299 1272 2.1 2.65 13.27 0.15 60% S14, 25% S9

A 1445 1413 2.3 26.54 19.49 0.32 75% S8, 17% S7

A 1652 1611 2.5 14.38 22.95 0.05 70% S7, 24% S8

A 2293 2236 2.5 119.61 164.45 0.17 100% S4

A 3116 – – 9.58 43.03 0.64 50% S3, 49% S1

A 3125 – – 4.18 183.42 0.16 50% S3, 49% S1

A 3202 – – 5.71 67.53 0.68 99% S2
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TABLE VI
Symmetry species, si, DFT wavenumbers, ki (in cm–1), observed wavenumbers from the litera-
ture11, ki(obs) (in cm–1), error percentage in the DFT values, e (in %), infrared intensities,
Ii (in km mol–1), Raman activities, Si (in Å4 amu–1), depolarization ratios ρi and distribution
of the potential energy of a normal mode in the symmetry coordinates, PED (only values
larger than 10% are given), for the normal modes i in cis- and gauche-vinyldichlorosilane
(CH2=CH–SiCl2H)

si ki ki(obs) e Ii Si ρi PED

cis-Vinyldichlorosilane

A″ 76 103 26.2 0.00 5.49 0.75 92% S21

A″ 172 175 1.7 0.09 3.35 0.75 80% S19

A′ 173 175 1.1 6.38 2.67 0.73 39% S11, 30% S10, 27% S12

A′ 186 189 1.6 4.14 1.79 0.70 42% S10, 34% S13, 23% S12

A′ 321 322 0.3 2.84 8.24 0.18 40% S13, 19% S5, 12% S10,
12% S6

A′ 509 505 0.8 60.45 12.68 0.05 77% S5, 10% S13

A″ 512 531 3.6 20.15 1.50 0.75 56% S15, 32% S18, 12% S16

A″ 583 589 1.0 158.36 3.91 0.75 43% S15, 36% S18, 11% S16

A′ 722 730 1.1 68.79 2.56 0.21 80% S6

A″ 809 810 0.1 156.44 9.46 0.75 95% S20

A′ 809 810 0.1 149.65 6.76 0.69 50% S11, 36% S12

A″ 1004 973 3.2 36.02 0.62 0.75 100% S17

A′ 1029 997 3.2 10.37 2.73 0.57 62% S9, 29% S14

A″ 1037 1004 3.3 15.41 0.02 0.75 73% S16, 27% S18

A′ 1291 1272 1.5 0.88 15.07 0.16 61% S14, 25% S9

A′ 1442 1407 2.5 25.46 28.42 0.34 74% S8, 19% S7

A′ 1648 1603 2.8 10.50 28.19 0.09 69% S7, 25% S8

A′ 2275 2219 2.5 71.61 125.43 0.15 100% S4

A′ 3115 2965 5.1 10.34 102.58 0.15 96% S3

A′ 3135 3030 3.5 0.38 123.93 0.28 94% S1

A′ 3195 3074 3.9 7.39 95.47 0.57 97% S2
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TABLE VI
(Continued)

si ki ki(obs) e Ii Si ρi PED

gauche-Vinyldichlorosilane

A 73 103 29.1 0.19 4.57 0.75 100% S21

A 148 156 5.1 0.39 2.26 0.65 71% S19, 21% S13

A 168 175 4.0 3.88 3.79 0.75 40% S10, 36% S11, 17% S12

A 222 226 1.8 3.28 2.69 0.45 40% S10, 28% S12

A 379 371 2.2 5.84 3.45 0.53 58% S13

A 465 482 3.5 26.40 12.64 0.03 74%S5, 11% S18

A 536 536 0.0 51.02 5.86 0.34 37% S18, 21% S15, 14% S16,
12% S5

A 566 589 3.9 150.02 5.05 0.64 69% S15, 13% S18

A 683 694 1.6 27.10 4.00 0.35 71% S6

A 807 810 0.4 142.64 8.49 0.68 67% S20, 11% S11

A 825 824 0.1 197.73 9.59 0.75 31% S11, 29% S12, 27% S20

A 1013 977 3.7 32.69 0.85 0.43 100% S17

A 1027 997 3.0 14.53 2.05 0.60 62% S9, 29% S14

A 1028 1004 2.4 16.98 0.17 0.24 70% S16, 28% S18

A 1296 1272 1.9 1.14 12.19 0.13 63% S14, 25% S9

A 1443 1413 2.1 24.86 23.26 0.35 76% S8, 19% S7

A 1653 1603 3.1 7.57 27.41 0.08 70% S2, 23% S8

A 2275 2218 2.6 87.52 177.94 0.17 100% S4

A 3111 2965 4.9 4.72 66.28 0.65 82% S1, 17% S3

A 3125 3001 4.1 7.18 185.26 0.13 83% S1, 17% S1

A 3205 3079 4.1 4.89 73.96 0.62 99% S2



ingly, in the molecules where the relative stabilities of the conformers were
predicted wrongly, the theory severly underestimates the wavenumbers of
the torsional modes by as much as about 30%, while in all other modes the
largest occurring errors are usually about 5%, going up to about 9%, again
for the torsional mode. Unexpectedly large errors (30%) in the torsional
wavenumbers might be indicative for failures in the relative energy predic-
tions, because the other system, vinylmonofluoromethane, appears to ex-
hibit also a rather large torsional wavenumber35. Assignments on the basis
of the calculated PED are rather straightforward for modes of lower
wavenumbers, as well as for stretches on the upper end of the spectra, while
the skeletal modes around the centers of the spectra appear to be consider-
ably mixed.

CONCLUSION

Our final conclusion is that the shortcomings of the 6-311++G** basis set
reported by Galabov et al.14 on vinylmonofluoromethane are not very gen-
eral at all. It seems they show up mainly in that specific system because of
some polar effects in addition to the expected steric ones. In the other sys-
tem where the basis set makes a wrong prediction this seems to be due just
to the very small energy differences, which cannot be expected to be accu-
rately described by medium-size basis sets and comparatively low-level
computational methods and thus are not due to any inbalance in the basis
set. Vibrational spectra were well reproduced by our DFT/6-311++G** calcu-
lations, even in the case where relative energies of conformers were pre-
dicted wrongly. Thus further use of this kind of basis set seems to be
possible without big problems; however, large errors in torsional
wavenumbers seem to be indicative of accompanying errors in relative en-
ergy predictions. We currently plan to report in a forthcoming publication
a similar investigation using the corresponding basis set without diffuse
functions to see whether in our basis set it is really the addition of diffuse
functions that can be the cause of problems.

APPENDIX

Calculation of Vibrational Infrared and Raman Spectra

For calculation of the Raman spectra we used the scattering activities Sj, the
wavenumbers kj and the depolarization ratios ρj for each normal mode j as
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calculated by the program Gaussian98 5. Then the Raman cross-sections
which are proportional to the intensities are given as10,36
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Since we are interested only in relative intensities, we calculated them as
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where jm denotes the line among all the lines from all conformers present
in the mixture that has the largest Raman cross-section. As laser wavelength
we used that of an argon ion laser at λo = 514.5 nm (ko = 1/λo). As tem-
perature we used T = 298.15 K. Then the line shapes are calculated as
Lorentzians (L) with a width of ∆k = 10 cm–1 corresponding to the esti-
mated average width in the experimental spectra used for comparison. Thus
the final spectrum for one conformer of a molecule is calculated as

′ = − = ′ = ′∑I k I L k k I k
I k
I

I I kj j
mj

m( ) ( ) ; ( )
( )

; max{ ( )}

( )
L k k

k

k k k
j

j

( )
/

( ) /
− =

− +
1 2

22 2π
∆

∆
(A3)

L k k kj( )− =
−∞

∞

∫ d 1

where the index j runs over all normal modes. For the plots a step size for
the grid of generally 10 cm–1 was used. However, when a line appears be-
tween two consecutive grid points, Np extra points with a step size of
∆k/(Np/2) are inserted (here Np = 12 is used; note that Np in the input
should be even) into this interval which include the exact center of the
line.

In our systems always more than one conformer was present. Thus after
calculation of the spectra of all conformers, they are superimposed with the
help of a Boltzmann distribution for free energy differences. Then the total
intensity as function of wavenumber for a mixture of N + 1 different con-
formers is given by
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Here Il(k) are the individual spectra of the conformers, l = 0 corresponds to
the most stable conformer, ∆Gl

o denotes the Gibbs energy difference be-
tween conformer l and the one chosen as 0 (see the main text for details),
and gl is the degeneracy of conformer l (in our case 2 for gauche conformers
and 1 for cis ones). The renormalization ensures that relative intensities
vary between 0 and 1.

The intensities given by the program for infrared (IR) spectra are calcu-
lated at all the levels of computation used. They represent actually inte-
grated absorption coefficients Aj for the different normal modes j of a
system. The Lambert–Beer law tells that at any wavenumber k of an absorp-
tion band corresponding to a normal mode j

log ( )10

I
I

k clj
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holds, where I is the light intensity after passing through the sample, Io the
incident intensity, εj(k) the molar absorption coefficient for mode j at
wavenumber k, c the concentration and l the optical path length. If c is
given in mol cm–3 and l in cm, then ε must be expressed in cm2 mol–1. Cal-
culation of the integrated absorption coefficient Aj of a line j,

A k kj j=
−∞

∞

∫ ε ( )d (A6)

adds a factor of cm–1 to the unit of εj(k) and thus Aj has the unit cm mol–1.
However, for a transmittance T = I/Io of 0.1 in a line of width 0, a concen-
tration of 0.1 mol l–1 and a path length of 1 cm, an integrated absorption
coefficient Aj of the order 10 000 cm mol–1 would be needed, and even
larger than that if T = 0.1 is for the peak transmittance of a line with finite
width. Thus the program gives Aj in units of km mol–1, and therefore in this
case Aj = 0.1 km mol–1. Thus in the case of IR lines a Lorentzian shape is
given to εj(k)
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where kj is the band center and ∆k the line width as above. Note, that the
Lorentzian gives the εj(k)-s the correct unit. Then the spectral absorption
coefficient for a molecule is calculated as
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If there is only one conformer present the relative transmittance at each
wavenumber is calculated as

T k k m( ) ( )/= −10 ε ε

ε εm k= max{ ( )} . (A9)

Thus εm represents 1/(cl). A mixture of more than one molecule is treated
similarly as in the case of Raman spectra with the help of populations Pl of
conformer l
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with the same meaning of the symbols as in Eq. (A4). Thus with the spec-
tral absorption coefficents εl(k) for each conformer l calculated as described
above, the total spectral absorption coefficient is given by
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and finally the relative transmittance of the mixture again by Eq. (A9)
where now εm represents also 1/(cl), however, with c being the concentra-
tion of all conformations together, and (cl) for the plot chosen such that
the spectral absorption coefficent varies between 0 and 1, and thus relative
transmittances between 0.1 and 1.

Potential Energy Distribution (PED) Calculation

To start our PED calculations, we read from the Gaussian output the normal
mode wavenumbers kk in cm–1 and the coefficients Nx in cartesian coordi-
nates. Because we have to take some precautions due to the fact that these
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coefficients are given only to an accuracy of two digits after the decimal
point, we outline our procedures here8 in some detail, although they are
based on the considerations given in Wilson’s book7. First of all, to arrive at
a consistent system of units with masses in amu, lengths in ? and force con-
stants in mdyne/Å we calculate
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where fk is the force constant, m*k the effective mass and kk the wave-
number in cm–1 of normal mode k, as given in the output. Note that singly
underlined quantities are column vectors, while doubly underlined ones
are matrices. The vector of normal coordinates is then

n N x= +
x (A13)

where the dagger denotes (for our real matrices here) the transpose of a
matrix, x is a vector containing the 3N (N is the number of atoms) cartesian
displacements (3 for each atom) from equilibrium, Nx is thus a 3N ×
(3N – 6) matrix, because translations and rotations are not included so far.
Therefore

n x xk ki i
i

ik i
i

= =+∑ ∑( ) ( )N Nx x . (A14)

As a next step because of the inaccuracies of the normal mode coeffi-
cients we normalize and orthogonalize them with respect to an “overlap”
matrix M–1, containing the inverse atomic masses on its diagonal and 0
otherwise. Each mass has to appear three times in sequence because of the
three cartesian displacements for each atom. This orthonormalization cor-
responds to the fact, that the mass-weighted cartesian normal mode coeffi-
cients Nq have to be orthonormal with metric 1

n N x N q q M x= = =+ +
x q ; /1 2

N M N N N lq x q q= =− +1 2/ ; (A15)

N M N lx x
+ =–1 .

Collect. Czech. Chem. Commun. 2007, Vol. 72, No. 1, pp. 15–50

Conformational Stability for Several Vinylhalomethanes and Silanes 41



The force constant matrix Fq in mass-weighted cartesian coordinates can
be derived from the fact that the potential energy V does not depend on
the coordinate system

2 1 2 1 2V = =+ + +x F x q M F M q q F qx x q=– / – /

F M F M n N q F N Nq x q q q q= = = =+
′ ′

– / – / ; ; ;1 2 1 2 � ε ε δk k k k k . (A16)

Thus from our input data we can construct Fq

F N Nq q q= +� . (A17)

In all further calculations we do not use the normal mode coefficients
read in, but those obtained by diagonalization of the so formed Fq. This
yields the same eigenvalues εk, but somewhat more accurate coefficients Nq.
Note that this matrix now contains also rotations and translations and is
therefore a square matrix of dimension 3N × 3N.

To obtain a PED, we now have to transform force constant matrices and
normal mode coefficients first into a space of internal coordinates and then
into one of symmetry coordinates. The latter ones define the atomic mo-
tions which one would like to assign the normal modes to, while the for-
mer ones are introduced just to make it easier to define the latter ones. For
a complete description of all possible internal motions one needs at least a
complete set of independent internal coordinates (3N – 6). Any of them can
be built from the 5 primitive ones: bond stretch, bond angle bend, wag, tor-
sion and libration. The latter ones are only needed if parts of the molecule
are linear (at least 3 colinear atoms). The program input just defines what
type of internal coordinate is desired together with the numbers of the
atoms involved. Then following7 and using the equilibrium geometry of
the molecule which is also part of the input, the program calculates the
matrix B which links the internal coordinate vector b to the cartesian dis-
placement vector x

b = Bx; b B xj ji i
i

= ∑ . (A18)
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The user is free to introduce an overcomplete set of internal coordinates,
since this usually makes the construction of the necessary symmetry coor-
dinates more easy. The complete set of independent internal coordinates
would give a B of dimension (3N – 6) × 3N, a rectangular matrix, which has
no normal inverse.

The next step in the input has to provide at least 3N – 6 coefficients
which link the desired symmetry coordinate vector s to the internal coordi-
nate vector b. The coefficient matrix has to contain only orthogonal sym-
metry coordinates

s = Ub . (A19)

At this point there are two possibilities for the user. One can provide ei-
ther a complete set of 3N – 6 symmetry coordinates together with six ortho-
gonal redundant coordinates, or the user can provide only the 3N – 6
necessary orthogonal symmetry coordinates. The program detects which
case is present and deals with it accordingly.

However, now as next step, redundant internal coordinates must be iden-
tified and removed from the list of internal coordinates, as well as from ma-
trix U, which links symmetry and internal coordinates. This can be done by
forming a square-symmetric matrix BB+. We use for inversions the fact that
for symmetric square matrices A, their inverse can be constructed from
their eigenvalue � (contains the eigenvalues on the diagonal and 0 else)
and eigenvector matrices V

A–1 = V�–1V+; (�–1) .–
′ ′=j j j j jλ δ1 (A20)

We first diagonalize BB+

B(B+)V = V� ; λ λ δ′ ′=j j j j j ; VV+ = V+V = l . (A21)

Then we have a redundant internal coordinate for each zero eigenvalue
of this matrix. The eigenvalues we can get by

V+BB+V = � . (A22)
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Therefore an eigenvalue of zero with index say jo means

V Vkj k k k j j
k k

o o o
( )BB +

′ ′
′

= =∑ λ 0

V B B Vkj kl k l
l

k j
k k

o o′ ′
′

∑∑ = 0

(A23)

V Bkj kl
kl

o∑∑ 





=
2

0

V Bkj kl
k

o∑ = 0 .

The excistence of a relation like the latter one between internal coordi-
nates just proves linear dependence. To choose an internal coordinate with
index ko to be removed from the matrix B, the program chooses ko such
that

| | max| | .V Vk j kjo o o
= (A24)

If after removal of an internal coordinate for each zero eigenvalue of BB+,
there are 3N – 6 independent coordinates left, the program goes on with
the calculation. If the set is not complete, it indicates the fact in the output
and stops execution. Redundants must be removed because BB+ cannot be
inverted if it has zero eigenvalues.

However, now the deleted dependent coordinates have to be also re-
moved from U. Assume an internal coordinate ko has to be removed. Then
from the above dicussion we have the equation

B
V

V
Bk l

kj

k jk k
klo

o

o oo

= −
≠
∑ . (A25)

Let us call the matrix still containing the redundant internal coordinate
U′, and the new one obtained after removal U
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s U b U B xn nk k
k

nk
k

kl l
l

= ′ = ′ = =∑ ∑ ∑

= ′ + ′








 =

≠
∑∑ U B U B xnk kl nk k l

k k
l

l
o o

o

(A26)

= ′ − ′










≠≠
∑∑∑ U B U

V

V
B xnk kl nk

kj

k jk k
kl

k k
l

l
o

o

o ooo

In the last line of Eq. (A26) we just have inserted Eq. (A25). From this we
get our new symmetry coordinate matrix as

s U
V

V
U B x U

V
n nk

kj

k j
nk

k k
kl l

l
nk

kj= ′ − ′








 = ′ −

≠
∑ ∑o

o o

o

o

o

V
U b

k j
nk

k k
k

o o

o

o

′










≠
∑

U U
V

V
U k knk nk

kj

k j
nk= ′ − ′ ≠o

o o

o o; . (A27)

As next step the program orthogonalizes the old internal coordinates (let
us call the old matrix B′ from now on, and the new one B) to the transla-
tions and rotations contained in Nq as obtained from diagonalization of Fq.
This is again necessary because of the low accuracy of the Nx input. How-
ever, corrections are small. Let us call the 6 × 3N matrix, which links the
translations and rotations to the cartesian displacements, T. Then our new
B matrix has to fulfill

B Tkl jl
l

∑ = 0 (A28)

where index j runs from 1 to 6. This is reached, by adding a linear combina-
tion of the translations and rotations with yet unknown coefficients α to
the old matrix B′

B B Tkl kl kj jl
j

= ′ +
=

∑α
1

6

′ +








 =

=
′∑∑ B T Tkl kj jl

jl
j lα

1

6

0 . (A29)
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With the following definitions (N(T)q denotes the part of Nq that de-
scribes the six translations and rotations)

X TT N M N≡ =+ + −( ) ( )T Tq q
1

a B T T M N≡ ′ ≡+ −; ( )/1 2 T q (A30)

we obtain

a = –�X . (A31)

Since X is a square but not a symmetric matrix our program cannot invert
it. Thus

aX+ = –�XX+

� = –aX+(XX+)–1 . (A32)

Note that XX+ is a symmetric square matrix. Thus our new B matrix is

B = B′ – aX+(XX+)–1T . (A33)

Now the program adds the translations and rotations to B, to get a square
matrix. However, note that the procedures outlined in the following work
equally well for square-unsymmetric as for rectangular matrices. If B is in-
creased to a 3N × 3N matrix, the same has to be done for the symmetry co-
ordinate matrix U. This implies simply that for each translation or rotation
in B one has to add a symmetry coordinate in U which has as its only com-
ponent just the internal translation or rotation coordinate under consider-
ation.

Now we have to compute a force constant matrix in internal coordinates,
Fb. To this end, a look at the potential energy V again shows the way

2V = x+Fxx = q+Fqq = n+�n =

= b+Fbb = x+B+FbBx (A34)

Fx = B+FbB .
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With B being either rectangular or not invertible with our program, we
have to resort again to a trick

BFxB+ = (BB+) Fb(BB+)

Fb = (BB+)–1 BFxB+ (BB+)–1 ≡ AFxA+ (A35)

A ≡ (BB+)–1 B .

In this way it is easy to calculate Fb from Fx for any form of B. A similar
procedure we have when transforming Fb to Fs, the force constant matrix in
symmetry coordinates

2V = s+Fss = b+U+FsUb = b+ Fbb

U+FsU = Fb . (A36)

From this we can calculate Fs from Fb in the same way as above. Note that
in almost all cases we use our program, U is not a square orthogonal matrix.
The latter would imply that U–1 = U+. In that case we would simply have
Fs = U Fb U+.

Using the definitions b = Nbn and s = Nsn, it is easy to show that Nb
diagonalizes Fb and Ns diagonalizes Fs. With Eq. (A13) we obtain

b = Nbn = NbN+
xx . (A37)

Since Eq. (A18) tells that also b = Bx we get

B = NbN x
+

BM–1Nx = NbN x
+ Nx = Nb . (A38)

The last step uses Eq. (A15). Finally, again with Eq. (A15) we arrive at

Nb = BM–1/2Nq = BM–1Nx . (A39)

In the same fashion we make use of Eqs (A18) and (A19), which tell us
that

s = Nsn = NsN x
+ x (A40)
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and also

s = Ub = UBx . (A41)

Therefore, in the same way as for Nb we get for Ns

Ns = UBM–1/2Nq = UBM–1Nx . (A42)

Now using step by step Eq. (A36), then Eq. (A34), then Eq. (A16), and
finally Eqs (A15) and (A17) we can write

N s
+ FsNs = Nq

+ M–1/2B+U+FsUBM–1/2Nq =

= Nq
+ M–1/2B+FbBM–1/2Nq =

= Nq
+ M–1/2FxM–1/2Nq =

= Nq
+ FqNq = N+

qNq�Nq
+ Nq = � .

(A43)

Thus we arrive at

� = Nq
+ FqNq = N s

+ FsNs . (A44)

Therefore the potential energy in the normal mode j, εj, is

ε j jj jk
k

kj= = =+ +∑( ) ( ) ( )N F N N F Ns s s s s s

= ∑ ( ) ( ) .N F Ns s skj kj
k

(A45)

Finally, the contribution of the symmetry coordinate k to the potential
energy of normal mode j, εj, in percent, PEDkj, is given by

PED
s s s

kj

kj kl lj
l

j

F
=

∑( ) ( ) ( )
% .

N N

ε
100 (A46)

It is easy to see that the sum over all symmetry coordinates k yields 100%
as required. However, due to the presence of negative coupling constants in
Fs and Fb, small negative percentages can occur due to the inaccuracies in
the Nx input. Further, if two coordinates are very strongly coupled, i.e. are
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nearly linear-dependent, even percentages larger than 100% for one of
them compensated by percentages less than 100% for the other can occur.
In such a case one has to change either internal or symmetry coordinates,
to reduce coupling constants.

The authors gratefully acknowledge the support of this work by the King Fahd University of
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